Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.187
1.
Proc Natl Acad Sci U S A ; 121(11): e2314911121, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38442169

In amniote limbs, Fibroblast Growth Factor 10 (FGF10) is essential for limb development, but whether this function is broadly conserved in tetrapods and/or involved in adult limb regeneration remains unknown. To tackle this question, we established Fgf10 mutant lines in the newt Pleurodeles waltl which has amazing regenerative ability. While Fgf10 mutant forelimbs develop normally, the hindlimbs fail to develop and downregulate FGF target genes. Despite these developmental defects, Fgf10 mutants were able to regenerate normal hindlimbs rather than recapitulating the embryonic phenotype. Together, our results demonstrate an important role for FGF10 in hindlimb formation, but little or no function in regeneration, suggesting that different mechanisms operate during limb regeneration versus development.


Fibroblast Growth Factor 10 , Animals , Fibroblast Growth Factor 10/genetics , Fibroblast Growth Factor 10/metabolism , Hindlimb/growth & development , Regeneration , Pleurodeles/genetics , Pleurodeles/growth & development , Pleurodeles/metabolism
2.
Genetics ; 227(1)2024 May 07.
Article En | MEDLINE | ID: mdl-38386912

Vertebrate limbs start to develop as paired protrusions from the lateral plate mesoderm at specific locations of the body with forelimb buds developing anteriorly and hindlimb buds posteriorly. During the initiation process, limb progenitor cells maintain active proliferation to form protrusions and start to express Fgf10, which triggers molecular processes for outgrowth and patterning. Although both processes occur in both types of limbs, forelimbs (Tbx5), and hindlimbs (Isl1) utilize distinct transcriptional systems to trigger their development. Here, we report that Sall1 and Sall4, zinc finger transcription factor genes, regulate hindlimb initiation in mouse embryos. Compared to the 100% frequency loss of hindlimb buds in TCre; Isl1 conditional knockouts, Hoxb6Cre; Isl1 conditional knockout causes a hypomorphic phenotype with only approximately 5% of mutants lacking the hindlimb. Our previous study of SALL4 ChIP-seq showed SALL4 enrichment in an Isl1 enhancer, suggesting that SALL4 acts upstream of Isl1. Removing 1 allele of Sall4 from the hypomorphic Hoxb6Cre; Isl1 mutant background caused loss of hindlimbs, but removing both alleles caused an even higher frequency of loss of hindlimbs, suggesting a genetic interaction between Sall4 and Isl1. Furthermore, TCre-mediated conditional double knockouts of Sall1 and Sall4 displayed a loss of expression of hindlimb progenitor markers (Isl1, Pitx1, Tbx4) and failed to develop hindlimbs, demonstrating functional redundancy between Sall1 and Sall4. Our data provides genetic evidence that Sall1 and Sall4 act as master regulators of hindlimb initiation.


DNA-Binding Proteins , Gene Expression Regulation, Developmental , Hindlimb , LIM-Homeodomain Proteins , Transcription Factors , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Mice , Hindlimb/embryology , Hindlimb/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Limb Buds/metabolism , Limb Buds/embryology , Mice, Knockout , Embryo, Mammalian/metabolism , Fibroblast Growth Factor 10/genetics , Fibroblast Growth Factor 10/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
3.
Orthod Craniofac Res ; 27(1): 84-94, 2024 Feb.
Article En | MEDLINE | ID: mdl-37452556

OBJECTIVE: Dysregulation of Fibroblast Growth Factor 10 (FGF10), a member of the family of Fibroblast Growth Factor (FGF) proteins, has been implicated in craniofacial and dental anomalies, including craniosynostosis, cleft palate, and Lacrimo-Auriculo-Dento-Digital Syndrome. The aim of this murine study was to assess the craniofacial and dental phenotypes associated with a heterozygous FGF10 gene (FGF10+/- ) mutation at skeletal maturity. METHODS: Skulls of 40 skeletally mature mice, comprising two genotypes (heterozygous FGF10+/- mutation, n = 22; wildtype, n = 18) and two sexes (male, n = 23; female, n = 17), were subjected to micro-computed tomography. Landmark-based linear dimensions were measured for the cranial vault, maxilla, mandible, and first molar teeth. Multivariate analysis of variance was performed to assess whether there were significant differences in the craniofacial and dental structures between genotypes and sexes. RESULTS: The craniomaxillary skeleton and the first molar teeth were smaller in the FGF10+/- mice (P < .05), but the mandible was unaffected. Sex did not have a significant effect on these structures (P > .05). Cranial sutural defects were noted in 5/22 (22.7%) mutant versus 2/18 (11.1%) wildtype mice, and cleft palate in only one (4.5%) mutant mouse. None of the mice displayed craniosynostosis, expansive bony lesions, bifid condyles, or impacted teeth. CONCLUSION: The FGF10+/- mutation was associated with craniomaxillary skeletal hypoplasia that probably arose from deficient (delayed) intramembranous ossification of the sutured bones. Overall, the skeletal and dental data suggest that the FGF10 gene plays an important role in the aetiology of craniofacial dysmorphology and malocclusion.


Cleft Palate , Craniofacial Abnormalities , Craniosynostoses , Mice , Male , Female , Animals , Cleft Palate/genetics , X-Ray Microtomography , Fibroblast Growth Factor 10/genetics , Disease Models, Animal , Craniofacial Abnormalities/diagnostic imaging , Craniofacial Abnormalities/genetics , Craniosynostoses/genetics , Mutation/genetics
4.
Arthritis Rheumatol ; 76(1): 32-47, 2024 01.
Article En | MEDLINE | ID: mdl-37584284

OBJECTIVE: Fibroblast-like synoviocytes (FLSs) contribute to inflammation and joint damage in rheumatoid arthritis (RA). However, the regulatory mechanisms of FLSs in relapse and remission of RA remain unknown. Identifying FLS heterogeneity and their underlying pathogenic roles may lead to discovering novel disease-modifying antirheumatic drugs. METHODS: Combining single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics, we sequenced six matched synovial tissue samples from three patients with relapse RA and three patients in remission. We analyzed the differences in the transcriptomes of the FLS subsets between the relapse and remitted phases. We validated several key signaling pathways using quantitative real-time PCR (qPCR) and multiplex immunohistochemistry (mIHC). We further targeted the critical signals in vitro and in vivo using the collagen-induced arthritis (CIA) model in rats. RESULTS: Lining and sublining FLS subsets were identified using scRNA-seq. Differential analyses indicated that the fibroblast growth factor (FGF) pathway was highly activated in the lining FLSs from patients with relapse RA for which mIHC confirmed the increased expression of FGF10. Although the type I interferon pathway was also activated in the lining FLSs, in vitro stimulation experiment suggested that it was independent of the FGF10 pathway. FGF10 knockdown by small interfering RNA in FLSs significantly reduced the expression of receptor activator of NF-κB ligand. Moreover, recombinant FGF10 protein enhanced bone erosion in the primary human-derived pannus cell culture, whereas the FGF receptor (FGFR) 1 inhibitor attenuated this process. Finally, administering an FGFR1 inhibitor displayed a therapeutic effect in a CIA rat model. CONCLUSION: The FGF pathway is a critical signaling pathway in relapse RA. Targeted tissue-specific inhibition of FGF10/FGFR1 may provide new opportunities to treat patients with relapse RA.


Arthritis, Rheumatoid , Synoviocytes , Humans , Rats , Animals , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/pharmacology , Fibroblast Growth Factor 10/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Synoviocytes/metabolism , Inflammation/metabolism , Fibroblasts/metabolism , Recurrence , Cells, Cultured , Cell Proliferation , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/therapeutic use
5.
Int Wound J ; 21(4): e14622, 2024 Apr.
Article En | MEDLINE | ID: mdl-38158884

This study aims to evaluate the clinical effects of different blood derivatives on wound healing using network meta-analysis. PubMed, Embase, OVID, Web of Science, SCOPUS and Cochrane Central were searched to obtain studies about blood derivatives on wound healing until October 2023. R 4.2.0 and Stata 15.0 softwares were used for data analysis. Forty-four studies comprising 5164 patients were included. The results of network meta-analysis showed that the healing area from high to low was GF + ORCCB, ORCCB, GF, PRF, Unnas paste dressing, APG, PRP injection, PRP, PRP + thrombin gel, PPP, HPL, CT. The healing time from low to high was PRP + thrombin gel, GF, PRP, PC + K, PC, APG, PRF, CT, Silver sulfadiazine ointment. The number of patients cured from high to low was APG, PRP injection, PRP, Aurix, PRF, Leucopatch, HPL, Antimicrobial Ointment Dressing, CT, 60 µg/cm2 repifermin, 120 µg/cm2 repifermin, AFG, PPP. The order of analgesic effect from high to low was AFG, Aminogam gel, PRF, PRP, Oxidised oil, APG, GF, CT. The order of the number of wound infection cases from low to high is APG, 20 µg/cm2 repifermin, 60 µg/cm2 repifermin, PRP, LeucoPatch, CT, PPP, Antiseptic ointment dressing. Healing area: GF + ORCCB had the best effect; Healing time: PRP + thrombin gel took the shortest time. The number of cured patients and the reduction of wound infection: APG has the best effect. Analgesic effect: AFG has the best effect. More studies with large sample sizes are needed to confirm the above findings.


Platelet-Rich Plasma , Wound Infection , Humans , Network Meta-Analysis , Thrombin/pharmacology , Ointments , Fibroblast Growth Factor 10/pharmacology , Wound Healing , Treatment Outcome , Analgesics
6.
Cell Signal ; 113: 110964, 2024 01.
Article En | MEDLINE | ID: mdl-37956773

BACKGROUND: The effect of fibroblast growth factor 10 (Fgf10) against allergic asthma has remained unclear, despite its importance in lung development and homeostasis maintenance. The purpose of this study was to investigate the protective effect and potential mechanism of Fgf10 on asthma. METHOD: House Dust Mite (HDM)-induced asthma mice were administered recombinant Fgf10 intranasally during activation. Flow cytometry and ELISA were performed to determine type of inflammatory cells and type 2 cytokines levels in bronchoalveolar lavage fluid (BALF). Hematoxylin and eosin (H&E) and periodic acid - Schiff (PAS) staining of lung sections were conducted to evaluate histopathological assessment. Transcriptome profiling was analyzed using RNA-seq, followed by bioinformatics and network analyses to investigate the potential mechanisms of Fgf10 in asthma. RT-qPCR was also used to search for and validate differentially expressed genes in human Peripheral Blood Mononuclear Cells (PBMCs). RESULTS: Exogenous administration of Fgf10 alleviated HDM-induced inflammation and mucus secretion in lung tissues of mice. Fgf10 also significantly inhibited the accumulation of eosinophils and type 2 cytokines (IL-4, IL-5, and IL-13) in BALF. The PI3K/AKT/NF-κB pathway may mediate the suppressive impact of Fgf10 on the asthma inflammation. Through RNA-seq analysis, the intersection of 71 differentially expressed genes (DEGs) was found between HDM challenge and Fgf10 treatment. GO and KEGG enrichment analyses indicated a strong correlation between the DEGs and different immune response. Immune infiltration analysis predicted the differential infiltration of five types of immune cells, such as NK cells, dendritic cells, monocytes and M1 macrophages. PPI analysis determined hub genes such as Irf7, Rsad2, Isg15 and Rtp4. Interestingly, above genes were consistently altered in human PBMCs in asthmatic patients. CONCLUSION: Asthma airway inflammation could be attenuated by Fgf10 in this study, suggesting that it could be a potential therapeutic target.


Asthma , NF-kappa B , Animals , Humans , Mice , Asthma/drug therapy , Asthma/metabolism , Cytokines/metabolism , Disease Models, Animal , Fibroblast Growth Factor 10/pharmacology , Fibroblast Growth Factor 10/therapeutic use , Fibroblast Growth Factor 10/metabolism , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Lung/metabolism , Mice, Inbred BALB C , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
8.
Eur Respir J ; 62(5)2023 11.
Article En | MEDLINE | ID: mdl-37884305

BACKGROUND: COPD is an incurable disease and a leading cause of death worldwide. In mice, fibroblast growth factor (FGF)10 is essential for lung morphogenesis, and in humans, polymorphisms in the human FGF10 gene correlate with an increased susceptibility to develop COPD. METHODS: We analysed FGF10 signalling in human lung sections and isolated cells from healthy donor, smoker and COPD lungs. The development of emphysema and PH was investigated in Fgf10+/- and Fgfr2b+/- (FGF receptor 2b) mice upon chronic exposure to cigarette smoke. In addition, we overexpressed FGF10 in mice following elastase- or cigarette smoke-induced emphysema and pulmonary hypertension (PH). RESULTS: We found impaired FGF10 expression in human lung alveolar walls and in primary interstitial COPD lung fibroblasts. In contrast, FGF10 expression was increased in large pulmonary vessels in COPD lungs. Consequently, we identified impaired FGF10 signalling in alveolar walls as an integral part of the pathomechanism that leads to emphysema and PH development: mice with impaired FGF10 signalling (Fgf10+/- and Fgfr2b+/- ) spontaneously developed lung emphysema, PH and other typical pathomechanistic features that generally arise in response to cigarette smoke exposure. CONCLUSION: In a therapeutic approach, FGF10 overexpression successfully restored lung alveolar and vascular structure in mice with established cigarette smoke- and elastase-induced emphysema and PH. FGF10 treatment triggered an initial increase in the number of alveolar type 2 cells that gradually returned to the basal level when the FGF10-mediated repair process progressed. Therefore, the application of recombinant FGF10 or stimulation of the downstream signalling cascade might represent a novel therapeutic strategy in the future.


Cigarette Smoking , Emphysema , Hypertension, Pulmonary , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Animals , Mice , Pulmonary Disease, Chronic Obstructive/drug therapy , Hypertension, Pulmonary/complications , Pancreatic Elastase/adverse effects , Pancreatic Elastase/metabolism , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/therapeutic use , Cigarette Smoking/adverse effects , Pulmonary Emphysema/etiology , Lung/metabolism , Emphysema/complications , Mice, Inbred C57BL
9.
BMC Urol ; 23(1): 169, 2023 Oct 24.
Article En | MEDLINE | ID: mdl-37875848

BACKGROUND: Dysregulation of the terminal differentiation of bladder urothelium is associated with the pathogenesis of urinary tract disorders. Fibroblast growth factor (Fgf)7 and Fgf10 stimulate urothelial proliferation; however, their roles in cellular differentiation remain unclear. In this study, we used an organoid system to investigate the roles of these Fgfs in regulating bladder urothelium differentiation and identify their distribution patterns in the mouse bladder. METHODS: Adult bladder epithelia (AdBE) isolated from adult mouse bladder tissues (AdBTs) were used to culture adult bladder organoids (AdBOs) in the presence of Fgf7 and Fgf10. The differentiation status of the cells in AdBTs, AdBEs, AdBOs, and neonatal bladder tissues (NeoBTs) was analyzed via quantitative real-time-PCR for the presence of undifferentiated cell markers (Krt5, Trp63, and Krt14) and differentiated cell markers (Krt20, Upk1a, Upk2, and Upk3a). Organoid cell proliferation was assessed by counting cell numbers using the trypan blue method. The effects of Fgf7 and Fgf10 on organoid differentiation were assessed using different doses of Fgfs, and the involvement of peroxisome proliferator-activated receptor γ (PPARγ) signaling in these processes was tested by introducing a PPARγ agonist (Rosiglitazone) and antagonist (T0070907) to the culture. The expression patterns of Fgf7 and Fgf10 were examined via in situ hybridization of AdBTs. RESULTS: AdBOs showed higher expression of undifferentiated cell markers and lower expression of differentiated cell markers than AdBTs, NeoBTs, and AdBEs, indicating the relatively immature state of AdBOs. Differentiation of AdBOs was enhanced by Rosiglitazone and Fgf7, suggesting an interplay of intracellular signals between Fgf7 and PPARγ. Co-addition of T0070907 suppressed Fgf7-mediated differentiation, demonstrating that PPARγ is activated downstream of Fgf7 to promote cellular differentiation into umbrella cells. Furthermore, we found that Fgf7 is predominantly expressed in the umbrella cells of the urothelium, whereas Fgf10 is predominantly expressed in the urothelium and stroma of AdBTs. CONCLUSIONS: We demonstrated that unlike Fgf10, Fgf7 induces cellular differentiation via PPARγ activity and has a unique tissue distribution pattern in the adult bladder. Further studies on the Fgf7-PPARγ signaling axis would provide insights into the differentiation mechanisms toward functional umbrella cells and the pathogenesis of several urinary tract diseases.


PPAR gamma , Urinary Bladder , Mice , Animals , PPAR gamma/metabolism , Rosiglitazone/metabolism , Urothelium/metabolism , Cell Differentiation , Organoids , Fibroblast Growth Factor 10/pharmacology , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 7/metabolism , Uroplakin III/metabolism
10.
Pediatr Pulmonol ; 58(11): 3095-3105, 2023 11.
Article En | MEDLINE | ID: mdl-37560881

INTRODUCTION: Fibroblast growth factor 10 (FGF10) is a signaling molecule with a well-established role for lung branching morphogenesis. Rare heterozygous, deleterious variants in the FGF10 gene are known causes of the lacrimo-auriculo-dento-digital (LADD) syndrome and aplasia of lacrimal and salivary glands. Previous studies indicate that pathogenic variants in FGF10 can cause childhood Interstitial Lung Disease (chILD) due to severe diffuse developmental disorders of the lung, but detailed reports on clinical presentation and follow-up of affected children are lacking. METHODS: We describe four children with postnatal onset of chILD and heterozygous variants in FGF10, each detected by exome or whole genome sequencing. RESULTS: All children presented with postnatal respiratory failure. Two children died within the first 2 days of life, one patient died at age of 12 years due to right heart failure related to severe pulmonary hypertension (PH) and one patient is alive at age of 6 years, but still symptomatic. Histopathological analysis of lung biopsies from the two children with early postpartum demise revealed diffuse developmental disorder representing acinar dysplasia and interstitial fibrosis. Sequential biopsies of the child with survival until the age of 12 years revealed alveolar simplification and progressive interstitial fibrosis. DISCUSSION: Our report extends the phenotype of FGF10-related disorders to early onset chILD with progressive interstitial lung fibrosis and PH. Therefore, FGF10-related disorder should be considered even without previously described syndromic stigmata in children with postnatal respiratory distress, not only when leading to death in the neonatal period but also in case of persistent respiratory complaints and PH.


Lacrimal Apparatus Diseases , Lung Diseases, Interstitial , Child , Humans , Infant, Newborn , Fibroblast Growth Factor 10/genetics , Fibrosis , Lacrimal Apparatus Diseases/genetics , Lung , Lung Diseases, Interstitial/genetics
11.
Aging Cell ; 22(9): e13937, 2023 09.
Article En | MEDLINE | ID: mdl-37503695

Alzheimer's disease (AD) is characterized with senile plaques formed by Aß deposition, and neurofibrillary tangles composed of hyperphosphorylated tau protein, which ultimately lead to cognitive impairment. Despite the heavy economic and life burdens faced by the patients with AD, effective treatments are still lacking. Previous studies have reported the neuroprotective effects of FGF10 in CNS diseases, but its role in AD remains unclear. In this study, we demonstrated that FGF10 levels were reduced in the serum of AD patients, as well as in the brains of 3xTg-AD mice and APPswe-transfected HT22 cells, suggesting a close relationship between FGF10 and AD. Further investigations revealed that intranasal delivery of FGF10 improved cognitive functions in 3xTg-AD mice. Additionally, FGF10 treatment reduced tau hyperphosphorylation and neuronal apoptosis, thereby mitigating neuronal cell damage and synaptic deficits in the cortex and hippocampus of 3xTg-AD mice, as well as APPswe-transfected HT22 cells. Furthermore, we evaluated the therapeutic potential of FGF10 gene delivery for treating AD symptoms and pathologies. Tail vein delivery of the FGF10 gene using AAV9 improved cognitive and neuronal functions in 3xTg-AD mice. Similarly, endogenous FGF10 overexpression ameliorated tau hyperphosphorylation and neuronal apoptosis in the cortex and hippocampus of 3xTg-AD mice. Importantly, we confirmed that the FGFR2/PI3K/AKT signaling pathway was activated following intranasal FGF10 delivery and AAV9-mediated FGF10 gene delivery in 3xTg-AD mice and APPswe-transfected HT22 cells. Knockdown of FGFR2 attenuated the protective effect of FGF10. Collectively, these findings suggest that intranasal delivery of FGF10 and AAV9-mediated FGF10 gene delivery could be a promising disease-modifying therapy for AD.


Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/metabolism , tau Proteins/metabolism , Fibroblast Growth Factor 10/therapeutic use , Phosphatidylinositol 3-Kinases/therapeutic use , Apoptosis , Disease Models, Animal , Mice, Transgenic , Amyloid beta-Peptides/metabolism
12.
Behav Brain Res ; 453: 114598, 2023 09 13.
Article En | MEDLINE | ID: mdl-37506852

Mental disorders (MD), such as anxiety, depression, and cognitive impairment, are very common during pregnancy and predispose to adverse pregnancy outcomes; however, the underlying mechanisms are still under intense investigation. Although the most common RNA modification in epigenetics, N6-methyladenosine (m6A) has been widely studied, its role in MD has not been investigated. Here, we observed that fat mass and obesity-associated protein (FTO) are downregulated in the hippocampus of pregnant rats with MD induced by fear stress and demonstrated that FTO participates in and regulates MD induced by fear stress. In addition, we identified four genes with anomalous modifications and expression (double aberrant genes) that were directly regulated by FTO, namely Angpt2, Fgf10, Rpl21, and Adcy7. Furthermore, we found that these genes might induce MD by regulating the PI3K/Akt and Rap1 signaling pathways. It appears that FTO-mediated m6A modification is a key regulatory mechanism in MD caused by fear stress during pregnancy.


Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Fear , Hippocampus , Mental Disorders , Stress, Psychological , Animals , Female , Pregnancy , Rats , Down-Regulation , Fibroblast Growth Factor 10 , Hippocampus/enzymology , Mental Disorders/enzymology , Phosphatidylinositol 3-Kinases , Stress, Psychological/enzymology , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
13.
J Endocrinol ; 259(1)2023 09 01.
Article En | MEDLINE | ID: mdl-37417397

Acute lung injury (ALI) is associated with an increased incidence of respiratory diseases, which are devastating clinical disorders with high global mortality and morbidity. Evidence confirms that fibroblast growth factors (FGFs) play key roles in mediating ALI. Mice were treated with LPS (lipopolysaccharide: 5 mg/kg, intratracheally) to establish an in vivo ALI model. Human lung epithelial BEAS-2B cells cultured in a corresponding medium with LPS were used to mimic the ALI model in vitro. In this study, we characterized FGF10 pretreatment (5 mg/kg, intratracheally) which improved LPS-induced ALI, including histopathological changes, and reduced pulmonary edema. At the cellular level, FGF10 pretreatment (10 ng/mL) alleviated LPS-induced ALI accompanied by reduced reactive oxygen species (ROS) accumulation and inflammatory responses, such as IL-1ß, IL-6, and IL-10, as well as suppressed excessive autophagy. Additionally, immunoblotting and co-immunoprecipitation showed that FGF10 activated nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway via Nrf2 nuclear translocation by promoting the interaction between p62 and keap1, thereby preventing LPS-induced ALI. Nrf2 knockout significantly reversed these protective effects of FGF10. Together, FGF10 protects against LPS-induced ALI by restraining autophagy via p62-Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 signaling pathway, implying that FGF10 could be a novel therapy for ALI.


Acute Lung Injury , NF-E2-Related Factor 2 , Mice , Humans , Animals , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Fibroblast Growth Factor 10/genetics , Fibroblast Growth Factor 10/pharmacology , Fibroblast Growth Factor 10/metabolism , Lipopolysaccharides/toxicity , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Autophagy , Lung/metabolism , Lung/pathology
14.
J Pediatr Ophthalmol Strabismus ; 60(4): e38-e40, 2023.
Article En | MEDLINE | ID: mdl-37478197

The authors report a case of lacrimo-auriculo-dento-digital syndrome in a 16-month-old boy with punctal agenesis, upper canalicular dysgenesis and polydactyly, presenting as bilateral congenital nasolacrimal duct obstruction and unilateral acute dacryocystitis. Genetic sequencing revealed a novel mutation in fibroblast growth factor 10. [J Pediatr Ophthalmol Strabismus. 2023;60(4):e38-e40.].


Hearing Loss , Lacrimal Duct Obstruction , Nasolacrimal Duct , Male , Humans , Infant , Lacrimal Duct Obstruction/diagnosis , Lacrimal Duct Obstruction/therapy , Lacrimal Duct Obstruction/complications , Fibroblast Growth Factor 10
15.
Mol Med Rep ; 28(1)2023 07.
Article En | MEDLINE | ID: mdl-37264963

Porous gelatin microspheres (GMSs) were constructed to enhance the neuroprotective effects of fibroblast growth factor 10 (FGF10) against spinal cord injury (SCI). The GMSs were prepared using a water­in­oil emulsion, followed by cross­linking, washing and drying. The blank GMSs had a mean particle size of 35 µm, with a coarse and porous surface. FGF10 was encapsulated within bulk GMSs via diffusion. To evaluate the effects of the FGF10­GMSs, locomotion tests were performed as a measure of the functional recovery of rats. Hematoxylin and eosin and Nissl staining were used to quantify tissue injury, and Evans blue staining was used to evaluate blood­spinal cord barrier restoration. Western blotting and TUNEL assays were employed to assess apoptotic activity. Immunohistochemical staining of neurofilament antibodies (NF200) was used to evaluate axonal rehabilitation. Compared with the groups intravenously administered FGF10 alone, disruption of the blood­spinal cord barrier and tissue injury were attenuated in the FGF10­GMS group; this group also showed less neuronal apoptosis, as well as enhanced neuronal and axonal rehabilitation. Implantable porous GMSs could serve as carriers for FGF10 in the treatment of SCI.


Gelatin , Spinal Cord Injuries , Rats , Animals , Gelatin/metabolism , Gelatin/pharmacology , Rats, Sprague-Dawley , Microspheres , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/pharmacology , Porosity , Spinal Cord Injuries/metabolism , Spinal Cord/metabolism , Recovery of Function
16.
Mol Immunol ; 159: 46-57, 2023 07.
Article En | MEDLINE | ID: mdl-37271009

Synovial fibrosis is a driver in the progression of osteoarthritis (OA). Fibroblast growth factor 10 (FGF10) has prominent anti-fibrotic effects in many diseases. Thus, we explored the anti-fibrosis effects of FGF10 in OA synovial tissue. In vitro, fibroblast-like synoviocytes (FLSs) were isolated from OA synovial tissue and stimulated with TGF-ß to establish a cell model of fibrosis. After treatment with FGF10, we assessed the effects on FLS proliferation and migration using CCK-8, EdU, and scratch assays, and collagen production was observed using Sirius Red Stain. The JAK2/STAT3 pathway and expression of fibrotic markers were evaluated through western blotting (WB) and immunofluorescence (IF). In vivo, we treated mice with OA induced by surgical destabilization of the medial meniscus (DMM) with FGF10 and assessed the anti-OA effect using histological and immunohistochemical (IHC) staining of MMP13, and fibrosis was evaluated using HE and Masson's trichrome staining. The expression of IL-6/JAK2/STAT3 pathway components was determined using ELISA, WB, IHC, and IF. In vitro, FGF10 inhibited TGF-ß-induced FLS proliferation and migration, decreased collagen deposition, and improved synovial fibrosis. Moreover, FGF10 mitigated synovial fibrosis and improved the symptoms of OA in DMM-induced OA mice. Overall, FGF10 had promising anti-fibrotic effects on FLSs and improved OA symptoms in mice. The IL-6/STAT3/JAK2 pathway plays key roles in the anti-fibrosis effect of FGF10. This study is the first to demonstrate that FGF10 inhibited synovial fibrosis and attenuated the progression of OA by inhibiting the IL-6/JAK2/STAT3 pathway.


Fibroblast Growth Factor 10 , Interleukin-6 , Osteoarthritis , Animals , Mice , Fibroblast Growth Factor 10/pharmacology , Fibroblasts , Interleukin-6/metabolism , Osteoarthritis/pathology , Synovial Membrane/pathology , Transforming Growth Factor beta/metabolism
17.
In Vivo ; 37(4): 1628-1637, 2023.
Article En | MEDLINE | ID: mdl-37369494

BACKGROUND/AIM: Increasing evidence has revealed FGFR2 as an attractive therapeutic target for cancer including cholangiocarcinoma (CCA). The present study investigated the oncogenic mechanisms by which FGF10 ligand activates FGFR2 in CCA cells and determined whether FGFR inhibitors could suppress FGF10-mediated migration of CCA cells. MATERIALS AND METHODS: Effects of FGF10 on the proliferation, migration, and invasion of KKU-M213A cells were assessed using clonogenic and transwell assays. Protein expression levels of FGFR2 and pro-angiogenic factors were determined via immunoblotting and antibody array analysis. FGFR2 knockdown using a small interfering RNA was used to validate the role of FGF10 in promoting cell migration via FGFR2. The effects of infigratinib (FGFR inhibitor) on cell viability, were determined in KKU-100, KKU-M213A, KKU-452 cells. Moreover, the efficacy of the FGFR inhibitor in suppressing migration via FGF10/FGFR2 stimulation was assessed in KKU-M213A cells. RESULTS: FGF10 significantly increased the expression of phospho-FGFR/FGFR2 and promoted the proliferation, migration, and invasion of KKU-M213A cells. FGF10 increased the expression levels of p-Akt, p-mTOR, VEGF, Slug, and pro-angiogenic proteins related to metastasis. Cell migration mediated by FGF10 was markedly decreased in FGFR2-knockdown cells. Moreover, FGF10/FGFR2 promoted the migration of cells, which was suppressed by the FGFR inhibitor. CONCLUSION: FGF10/FGFR2 activates the Akt/mTOR and VEGF/Slug pathways, which are associated with the stimulation of migration and invasion in CCA. Moreover, the FGF10/FGFR2 signaling was inhibited by an FGFR inhibitor resulting suppression of cell migration, which warrants further studies on their clinical utility for CCA treatment.


Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Proto-Oncogene Proteins c-akt/metabolism , Ligands , Vascular Endothelial Growth Factor A , Cell Line, Tumor , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , TOR Serine-Threonine Kinases , Protein Kinase Inhibitors/therapeutic use , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Cell Proliferation , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/therapeutic use , Fibroblast Growth Factor 10/pharmacology , Fibroblast Growth Factor 10/therapeutic use
18.
Crit Rev Eukaryot Gene Expr ; 33(4): 85-94, 2023.
Article En | MEDLINE | ID: mdl-37183948

Endometriosis is a pathological condition defined by the occurrence of endometrial glandular and stromal structures in anatomical compartments different from the uterine cavity. Endometriosis is a genetic polymorphism, estrogen-dependent inflammatory disease. This very common pathological entity causes a high level of morbidity in patients; it is also considered one of the most important causes of infertility. We and others have proposed as a pathogenetic mechanism of endometriosis a modification in the fine tuning of the processes of organogenesis of the uterus. We have correlated the immunohistochemical expression in deep endometriotic lesions and in normal endometrial tissue of several molecular factors that are implicated in the embryonic development of the uterine glands. We noticed a significant higher expression both for epithelium and stroma in the controls respect to the endometriosis samples for FGF7, FGF-10 and HGF. Interestingly, regarding FGF-23 and IFN-τ, we observed a significant higher expression in the ectopic endometrial stroma compared to the eutopic endometrium, while thepithetlium expression did not display a significant differential expression in endometriosis tissues respect to normal endometrium. The data generated support the fact that endometriosis tissues, both the epithelial and stromal component, have a different phenotype respect to the eutopic endometrium and sustain the hypothesis that alterations in the molecular mechanisms in control for adenogenesis and survival of endometrial structures are linked to the genesis and survival of endometriosis lesions outside of the uterus.


Endometriosis , Humans , Female , Endometriosis/genetics , Respect , Endometrium/metabolism , Endometrium/pathology , Epithelium , Fibroblast Growth Factor 10/metabolism , Hepatocyte Growth Factor/metabolism , Fibroblast Growth Factor 7/metabolism
19.
Acta Pharmacol Sin ; 44(10): 2004-2018, 2023 Oct.
Article En | MEDLINE | ID: mdl-37225844

Doxorubicin is a common chemotherapeutic agent in clinic, but myocardial toxicity limits its use. Fibroblast growth factor (FGF) 10, a multifunctional paracrine growth factor, plays diverse roles in embryonic and postnatal heart development as well as in cardiac regeneration and repair. In this study we investigated the role of FGF10 as a potential modulator of doxorubicin-induced cardiac cytotoxicity and the underlying molecular mechanisms. Fgf10+/- mice and an inducible dominant negative FGFR2b transgenic mouse model (Rosa26rtTA; tet(O)sFgfr2b) were used to determine the effect of Fgf10 hypomorph or blocking of endogenous FGFR2b ligands activity on doxorubicin-induced myocardial injury. Acute myocardial injury was induced by a single injection of doxorubicin (25 mg/kg, i.p.). Then cardiac function was evaluated using echocardiography, and DNA damage, oxidative stress and apoptosis in cardiac tissue were assessed. We showed that doxorubicin treatment markedly decreased the expression of FGFR2b ligands including FGF10 in cardiac tissue of wild type mice, whereas Fgf10+/- mice exhibited a greater degree of oxidative stress, DNA damage and apoptosis as compared with the Fgf10+/+ control. Pre-treatment with recombinant FGF10 protein significantly attenuated doxorubicin-induced oxidative stress, DNA damage and apoptosis both in doxorubicin-treated mice and in doxorubicin-treated HL-1 cells and NRCMs. We demonstrated that FGF10 protected against doxorubicin-induced myocardial toxicity via activation of FGFR2/Pleckstrin homology-like domain family A member 1 (PHLDA1)/Akt axis. Overall, our results unveil a potent protective effect of FGF10 against doxorubicin-induced myocardial injury and identify FGFR2b/PHLDA1/Akt axis as a potential therapeutic target for patients receiving doxorubicin treatment.


Fibroblast Growth Factor 10 , Receptor, Fibroblast Growth Factor, Type 2 , Animals , Mice , Doxorubicin , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factors/metabolism , Mice, Transgenic , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Signal Transduction/physiology , Transcription Factors
20.
Theriogenology ; 201: 126-137, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36893617

Fibroblast growth factor 10 (FGF10) is an important regulator of the mammalian cumulus-oocyte complex that plays a crucial role in oocyte maturation. In this study, we investigated the effects of FGF10 supplementation on the in vitro maturation (IVM) of buffalo oocytes and its related mechanisms. During IVM, the maturation medium was supplemented with a range of concentrations of FGF10 (0, 0.5, 5, and 50 ng/mL) and the resulting effects were corroborated using aceto-orcein staining, TUNEL apoptosis assay, detection of Cdc2/Cdk1 kinase in oocytes, and real-time quantitative PCR. In matured oocytes, the 5 ng/mL-FGF10 treatment resulted in a significantly increased nuclear maturation rate, which increased the activity of maturation-promoting factor (MPF) and enhanced buffalo oocyte maturation. Furthermore, it treatment significantly inhibited the apoptosis of cumulus cells, while simultaneously promoting its proliferation and expansion. This treatment also increased the absorption of glucose in cumulus cells. Thus, our results indicate that adding an appropriate concentration of FGF10 to a maturation medium during IVM can be beneficial to the maturation of buffalo oocytes and improve the potential of embryo development.


Buffaloes , In Vitro Oocyte Maturation Techniques , Animals , Female , Cumulus Cells/metabolism , Dietary Supplements , Fibroblast Growth Factor 10/pharmacology , In Vitro Oocyte Maturation Techniques/veterinary , In Vitro Oocyte Maturation Techniques/methods , Oocytes
...